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Abstract. Multifractal properties of the distribution of topological invariants for a model of
trajectories randomly entangled with a non-symmetric lattice of obstacles are investigated. Using
the equivalence of the model to random walks on a locally non-symmetric tree, statistical properties
of topological invariants, such as drift and return probabilities, have been studied by means of a
renormalization-group (RG) technique. The comparison of the analytical RG results with numerical
simulations as well as with the rigorous results of Gerl and Woess demonstrates clearly the validity
of our approach. It is shown explicitly, by direct counting for the discrete version of the model and
by conformal methods for the continuous version, that multifractality occurs when local uniformity
of the phase space (which has an exponentially large number of states) has been broken.

1. Introduction

The phenomenon of multifractality consists of a scale dependence of critical exponents. It has
been widely discussed in the literature for a wide range of issues, such as the statistics of strange
sets [1], diffusion-limited aggregation [2], wavelet transforms [3], conformal invariance [4] or
statistical properties of critical wavefunctions of massless Dirac fermions in a random magnetic
field [5–7].

The aim of our work is not only to describe a new model possessing a multiscaling
dependence, but also to show that the phenomenon of multifractality is related to local
non-uniformity of the exponentially growing (‘hyperbolic’) underlying ‘target’ phase space,
through an example of an entangled random-walks distribution in homotopy classes. Indeed,
to the best of our knowledge, almost all examples of multifractal behaviour for physical [5–7]
or more abstract [1, 8] systems share one common feature—all target phase spaces have a
hyperbolic structure and are locally non-uniform.

We believe that multiscaling is a much more generic physical phenomenon compared with
uniform scaling, appearing when the phase space of a system possesses a hyperbolic structure
with local symmetry breaking. Such a perturbation of local symmetry could be either regular
or random—from our point of view the details of the origin of local non-uniformity play a less
significant role.

We discuss below the basic features of multifractality in a locally non-uniform regular
hyperbolic phase space. We show, in particular, that a multifractal behaviour is encountered
in statistical topology in the case of an entangled (or knotted) random-walks distribution in
topological classes.

0305-4470/00/325631+22$30.00 © 2000 IOP Publishing Ltd 5631
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The paper is organized as follows. In section 2 we consider a two-dimensional (2D)N -step
random walk in a non-symmetric array of topological obstacles and investigate the multiscaling
properties of the ‘target’ phase space for a set of specific topological invariants—the ‘primitive
paths’. The renormalization-group computations of mean length of the primitive path, as well
as return probabilities to the unentangled topological state are developed in section 3. Section 4
is devoted to the application of conformal methods to a geometrical analysis of multifractality
in locally non-uniform hyperbolic spaces.

2. Multifractality of topological invariants for random entanglements in a lattice of
obstacles

The concept of multifractality has been formulated and clearly explained in [1]. We begin by
recalling the basic definitions of the Rényi spectrum, which will be used in the following.

Let ν(Ci) be an abstract invariant distribution characterizing the probability of a dynamical
system staying in a basin of attraction of some stable configuration Ci (i = 1, 2, . . . ,N ).
Taking a uniform grid parametrized by ‘balls’ of size l, we define the family of fractal
dimensions Dq :

Dq = 1

q − 1
lim
l→0

ln
∑N

i=1 ν
q(Ci)

ln l
. (1)

As q is varied, different subsets of νq associated with different values of q become dominant.
Let us define the scaling exponent α as follows:

νq(Ci) ∼ lα q

where α can take different values, corresponding to different regions of the measure which
become dominant in equation (1). In particular, it is natural to suggest that

∑N
i=1 ν

q(Ci) can
be rewritten as follows:

N∑
i=1

νq(Ci) =
[∫

dα′ ρ(α′)l−f (α
′)lα

′ q
]∣∣∣∣
l→0

where ρ(α) is the probability to have the value α lying in a small ‘window’ [α′, α′ + �α′]
and f (α) is a continuous function which has the sense of a fractal dimension of the subset
characterized by the value α.

Supposing ρ(α) > 0, one can evaluate the last expression approximately via the saddle-
point method. Thus, one obtains (see, for example, [1])

d

dα
f (α) = q

d2

dα2
f (α) < 0

which together with (1) leads to the following equations:

τ(q) = qα(q)− f [α(q)]

α(q) = d

dq
τ(q)

(2)

where τ(q) = (q−1)Dq . Hence, the exponents τ(q) and f [α(q)] are related via the Legendre
transform. For further details and a more advanced mathematical analysis, the reader is referred
to [9].
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2.1. 2D topological systems and their relation to hyperbolic geometry

Topological constraints essentially modify physical properties of the broad class of statistical
systems composed of chain-like objects. It should be stressed that topological problems are
widely investigated in connection with quantum field and string theories, 2D gravitation,
statistics of vortices in superconductors, the quantum Hall effect, thermodynamic properties
of entangled polymers, etc. Modern methods of theoretical physics allow us to describe
rather comprehensively the effects of non-Abelian statistics on the physical behaviour of some
systems. However, the following question still remains obscure: what are the fractal (and as it
is shown below, multifractal) properties of the distribution function of topological invariants,
characterizing the homotopy states of a statistical system with topological constraints? We
investigate this problem within the framework of the ‘random walk in an array of obstacles’
(RWAO) model.

The RWAO model can be regarded as physically clear and as a very representative image
for systems of fluctuating chain-like objects with a full range of non-Abelian topological
properties. This model is formulated as follows: suppose that a random walk of N steps of
length a takes place on a plane between obstacles which form a simple 2D rectangular lattice
with unit cell of size cx × cy . We assume that the random walk cannot cross (‘pass through’)
any obstacles.

It is convenient to begin with the lattice realization of the RWAO model. In this case the
random path can be represented as an N -step random walk in a square lattice of size a × a

(a � cy � cx)—see figure 1.
It had been shown previously (see, for example [10, 11]) that for a = cx = cy a lattice

random walk in the presence of a regular array of obstacles (punctures) on the dual lattice Z
2

is topologically equivalent to a free random walk on a graph—a Cayley tree with branching
number z = 4 (see figure 2). An outline of the derivation of this result is as follows. The
different topological states of our model coincide with the elements of the homotopy group

Figure 1. Random walk in the two-dimensional rectangular lattice of obstacles.
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Figure 2. Random path for a = cx = cy : (a) in the 2D lattice of obstacles; (b) in the covering
space (on the Cayley tree).

of the multi-punctured plane, which is the free group �∞ generated by a countable set of
elements. The translational invariance allows us to consider a local basis and therefore to
study the factored group �∞/Z2 = �z/2, where �z/2 is a free group with z/2 generators whose
Cayley graph is precisely a z-branching tree.

The relation between Cayley trees and hyperbolic geometry is discussed in detail in
section 3. Intuitively, such a relation could be understood as follows. The Cayley tree can be
isometrically embedded in the hyperbolic plane H (the surface of constant negative curvature).
The group �z/2 is one of the discrete subgroups of the group of motion of the hyperbolic plane
H = SL(2,R)/SO(2), therefore the Cayley tree can be considered as a particular discrete
realization of the hyperbolic plane.

Returning to the RWAO model, we conclude that each trajectory in the lattice of obstacles
can be lifted to a path in the ‘universal covering space’, i.e to a path on the z-branching Cayley
tree. The geodesic on the Cayley graph, i.e the shortest trajectory along the graph which
connects ends of the path, plays the role of a complete topological invariant for the original
trajectory in the lattice of obstacles. For example, the random walk in the lattice of obstacles
is closed and contractible to a point (i.e. is not entangled with the array of obstacles) if and
only if the geodesic length between the ends of the trajectory on the Cayley graph is zero.
Hence, this geodesic length can be regarded as a topological invariant, which preserves the
main non-Abelian features of the considered problem.

We would like to stress two facts concerning our model. (a) The exact configuration of
a geodesic is a complete topological invariant, while its length k is only a partial topological
invariant (except the case k = 0). (b) Geodesics have a clear geometrical interpretation, having
the sense of a bar (or ‘primitive’) path which remains after deleting all even-times folded parts
of a random trajectory in the lattice of obstacles. The concept of ‘primitive path’ has been
used repeatedly in the statistical physics of polymers, leading to a successful classification of
the topological states of chain-like molecules in various topological problems [10–12].

Even if many aspects of the statistics of random walks in fixed lattices of obstacles have
been well understood (see, for example, [13] and references therein), the set of problems
dealing with the investigation of fractal properties of the distribution of topological invariants
in the RWAO model are practically out of discussion. Thus we devote the next section to the
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study of fractal and multifractal structures of the measure on the set of primitive paths in the
RWAO model for a � cy < cx .

2.2. Multifractality of the measure on the set of primitive paths on a non-symmetric Cayley
tree

The classification of different topological states of an N -step random walk in a rectangular
lattice of obstacles in the case a � cy < cx turns out to be a more difficult and richer problem
than in the case a = cy = cx discussed above. However, after a proper rescaling, the mapping
of a random walk in the rectangular array of obstacles to a random walk on a Cayley tree can be
explored again. To proceed we should solve two auxiliary problems. First of all we consider a
random walk inside the elementary rectangular cell of the lattice of obstacles. Let us compute:

(a) the ‘waiting time’, i.e the average number of steps 〈t〉 which a t-step random walk spends
within a rectangle of size cx × cy ;

(b) the ratio of the ‘escape probabilities’ px and py through the corresponding sides cx and
cy for a random walk staying until time t within the elementary cell.

The desired quantities can be easily computed from the distribution function
P(x0, y0, x, y, t) which gives the probability of finding the t-step random walk with initial
(x0, y0) and final (x, y) points within the rectangle of size cx × cy . The function P(x, y, t)
in the continuous approximation (a → 0; t → ∞; at = constant) is the solution of the
following boundary problem:

∂

∂t
P (x, y, t) = 1

4a
2

(
∂2

∂x2
+
∂2

∂y2

)
P(x, y, t)

P (0, y, t) = P(cx, y, t) = P(x, 0, t) = P(x, cy, t) = 0

P(x, y, 0) = δ(x0, y0)

(3)

where a is the length of the effective step of the random walk and the value 1
4a

2 has the sense
of a diffusion constant.

The solution of equations (3) reads

P(x0, y0, x, y, t) = 4

cxcy

∞∑
mx=1

∞∑
my=1

exp

{
−π2a2

4

(
m2
x

c2
x

+
m2
y

c2
y

)
t

}

× sin
πmxx0

cx
sin

πmyy0

cy
sin

πmxx

cx
sin

πmyy

cy
. (4)

The ‘waiting time’ 〈t〉 can now be written as follows:

〈t〉 = 1

cxcy

∫ cx

0
dx0

∫ cy

0
dy0

∫ cx

0
dx

∫ cy

0
dy

∫ ∞

0
dt P (x0, y0, x, y, t) (5)

while the ratio px/py can be computed straightforwardly via the relation

px

py
=

∫ cx
0 dx0

∫ cy
0 dy0

∫ cx
0 dx P (x0, y0, x, y, t)

∣∣
y={a,cy−a}∫ cx

0 dx0
∫ cy

0 dy0
∫ cy

0 dy P (x0, y0, x, y, t)
∣∣
x={a,cx−a}

. (6)

In the ‘ground state dominance’ approximation we truncate the sum (4) at mx = my = 1
and obtain the following approximate expressions:

〈t〉 = 44 c2
x c

2
y

π6 a2 (c2
x + c2

y)

px

py
= c2

x

c2
y

. (7)
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Figure 3. Four-branching Cayley tree with different transition probabilities along branches.

In the symmetric case (cx = cy ≡ c) equation (7) gives 〈t〉 = 27 c2/π6 a2 and px/py = 1, as
it should for a square lattice of obstacles.

Now the distribution function of the primitive paths for the RWAO model can be obtained
via lifting this topological problem to the problem of directed random walks† on the four-
branching Cayley tree, where the random walk on the Cayley tree is defined as follows.

(a) The total number of steps Ñ on the Cayley tree is

Ñ = N

〈t〉 = π6

44

Na2(c2
x + c2

y)

c2
x c

2
y

(the value 〈t〉 has been computed in (7)).
(b) The distance (or ‘level’ k) on the Cayley tree is defined as the number of steps of the

shortest path between two points on the tree. Each vertex of the Cayley tree has four
branches; the steps along two of them carry a Boltzmann weight of 1, while the steps
along the two remaining ones carry a Boltzmann weight β as shown in figure 3. The value
of β is fixed by equation (7), which yields

β = px

py
= c2

x

c2
y

. (8)

The ultrametric structure of the topological phase space, i.e. of the Cayley tree γ (β), allows
us to use the results of paper [1] to investigate the multicritical properties of the measure of all
primitive (directed) paths of k steps along the graph γ (β) with non-symmetric weights 1 and
β (see figure 3). A rigorous mathematical description of such weighted paths on trees (called
cascades) can be found in [25], where the authors derive multifractal spectra, but for different
distributions of weights.

We construct the partition function '(β, k) which counts properly the weighted number
of all 4 × 3k−1 different k-step primitive paths on the graph γ (β).

Define two partition functions ak and bk of k-step paths, whose last steps carry the weights
1 and β correspondingly. These functions satisfy the recursion relations for k � 1:

ak+1 = ak + 2 bk

bk+1 = 2β ak + β bk
(k � 1) (9)

† Recall that by definition the primitive path is the geodesic distance and therefore cannot have two successive opposite
steps.



Multifractality of entangled random walks 5637

with the following initial conditions at k = 1:

a1 = 2

b1 = 2β.
(10)

Combining (9) and (10) we arrive at the following two-step recursion relation for the
function ak:

ak+2 = (1 + β) ak+1 + 3β ak (k � 1)

a1 = 2 (k = 1)

a2 = 2 + 4β (k = 2)

(11)

whose solution is

ak = a2 − a1λ2

λ1 − λ2
λk−1

1 +
a1λ1 − a2

λ1 − λ2
λk−1

2 (12)

where

λ1,2 = 1
2

(
1 + β ±

√
(1 + β)2 + 12β

)
. (13)

Taking into account that bk is given by the same recursion relation as ak , but with the
initial values b1 = 2β and b2 = 2β2 + 4β, we obtain the following expression for the partition
function '(β, k) = ak + bk:

'(β, k) = 2(1 + 4β + β2)− 2(1 + β)λ2

λ1 − λ2
λk−1

1 +
2(1 + β)λ1 − 2(1 + 4β + β2)

λ1 − λ2
λk−1

2 . (14)

The partition function '(β, k) contains all necessary information about the multifractal
behaviour. Following equations (1) and (2), we associate the set of stable configurations {Ci}
with the set of N (k) = 4 × 3k−1 vertices of level k. Hence, we define

N∑
i=1

νq(Ci) = '(βq, k)

'q(β, k)
. (15)

Taking into account that the uniform grid has resolution l(k) = 1/N (k) for k � 1 and
using equation (1), we obtain

τ(q) = lim
k→∞

ln'(βq, k)− q ln'(β, k)

ln l(k)
(16)

which allows us to determine the generalized Hausdorff dimension Dq via the relation

Dq = τ(q)/(q − 1). (17)

The corresponding plots of the functions Dq(q) for different values of β =
{0.001; 0.01; 0.1; 0.5} are shown in figure 4 (the numerical computations of equations (16)
and (17) are carried out for k = 100 000). The fact that Dq(q) depends on q clearly
demonstrates the multifractal behaviour.
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Figure 4. Dependence Dq(q) for different values of Boltzmann weight β.

3. Random walk on a non-symmetric Cayley tree

3.1. Master equation

Consider a random walk on a four-branching Cayley tree and investigate the distribution
P(k, Ñ) giving the probability for an Ñ -step random walk starting at the origin of the tree
to have a primitive (shortest) path between ends of length k. The random walk is defined as
follows: at each vertex of the Cayley tree the probability of a step along two of the branches is
px , and is py along the two others; px and py satisfy the conservation condition 2px +2py = 1.
Using equation (8), the following expressions hold:

px = β

2(1 + β)

py = 1

2(1 + β)
.

(18)

The symmetric case β = 1 (which gives px = py = 1
4 ) has already been studied and an

exact expression for P(k, Ñ) has been derived in [14]. A rigorous mathematical description
of random walks on graphs can be found in [16]. The importance of spherical symmetry (i.e.
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the fact that all vertices of a given level are strictly equivalent) is discussed in [23]. Another
example of a non-symmetric model on a tree (the case of randomly distributed transition
probabilities, the so-called RWRE model) is described in [24]. To the best of our knowledge,
the solution for the non-symmetric random walk which we defined above is known only for
k fixed and Ñ � 1 [15]. Here we consider the case k � 1, Ñ � 1, and, in particular, we
study the distribution in the neighbourhood of the maximum. Breaking the symmetry by taking
β �= 1 strongly affects the structure of the problem, since then the phase space becomes locally
non-uniform. We now have vertices of two different kinds, x and y, depending on whether the
step toward the root of the Cayley tree occurs with probability px or py . In order to obtain a
master equation for P(k, Ñ), we introduce the new variables Lx(k, Ñ) and Ly(k, Ñ), which
define the probabilities to be at level k in a vertex x or y after Ñ steps. In the same way
we recursively define the probabilities La1...an (k, Ñ), (ai = {x, y}) to be at level k in a vertex
such that the sequence of vertices toward the root of the tree is a1 . . . an. One can see that
the recursion depends on the total ‘history’ up to the root point, which makes the problem
non-local. The master equation for the distribution function P(k, Ñ),

P(k, Ñ + 1) = (2px + py)Ly(k − 1, Ñ) + (2py + px)Lx(k − 1, Ñ)

+pyLy(k + 1, Ñ) + pxLx(k + 1, Ñ) (19)

is coupled to the hierarchical set of functions {Lx,Ly;Lxx, Lxy, Lyx, Lyy; . . . ;La1...an} which
satisfy the following recursion relation:

La1...an (k, Ñ + 1) = (2 − δa1,a2)pa1La2...an (k − 1, Ñ)

+pxLxa1...an (k + 1, Ñ) + pyLya1...an (k + 1, Ñ) (20)

where a1 . . . an cover all sequences of any lengths (� k) in x and y. In order to close this
infinite system at an arbitrary order n0 we make the following assumption: for any n � n0 we
have

La1...an (k, Ñ)

P (k, Ñ)

∣∣∣∣∣ k�n0

Ñ�n0

−→ αa1...an (21)

with αa1...an constant.
Using the approximation (21) we rewrite (19)–(20) for large k and Ñ in terms of the

function P(k, Ñ) and constants αa1...an (0 < n � n0). Taking into account that

La1...anx + La1...any = La1...an

we arrive at 2n0−1 independent recursion relations for one and the same function P(k, Ñ),
with 2n0 − 1 independent unknown constants αa1...an0

. In order to make this system self-
consistent, one has to identify coefficients entering in different equations, which yields 2n0 −2
compatibility relations for the constants αa1...an0

, and the system is still open. This fact means
that all scales are involved and the evolution of La1...an depends on La1...an+1 , the evolution of
La1...an+1 depends onLa1...an+2 and so on. At each scale we need information about larger scales.
This kind of scaling problem naturally suggests the use of a renormalization-group approach,
which is developed in the next section.

To begin the renormalization procedure, we need to estimate the values of the constants
αa1...an0

for the first (i.e. the smallest) scale. Let us denote

αx = α

αy = 1 − α
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and define αxx, αxy, αyy, αyx as follows:

αxx = vxα

αyy = vy(1 − α)

αxy = (1 − vx)α

αyx = (1 − vy)(1 − α).

Now we set

pxαxa1...an + pyαya1...an = (
pxα + py(1 − α)

)
αa1...an (22)

which means that we neglect the correlations between the constants αa1...an and αa2...an at
different scales. As is shown in the next section, the renormalization-group approach allows
us to get rid of the approximation (22).

With (22) one can obtain the following generic master equation:

P(k, Ñ + 1) = pa1αa2...an

αa1...an

(2 − δa1,a2)P (k − 1, Ñ) +
(
αpx + (1 − α)py

)
P(k + 1, Ñ) (23)

where a1 . . . an again cover all possible sequences in x and y. We have now 2n0 − 1 unknown
quantities with 2n0 − 1 compatibility relations (23), which makes the system (23) closed.

For illustration, we derive the solution for n0 = 2:

P(k, Ñ + 1) = px

vx
P (k − 1, Ñ) +

(
αpx + (1 − α)py

)
P(k + 1, Ñ)

P (k, Ñ + 1) = 2px(1 − α)

α(1 − vx)
P (k − 1, Ñ) +

(
αpx + (1 − α)py

)
P(k + 1, Ñ)

P (k, Ñ + 1) = py

vy
P (k − 1, Ñ) +

(
αpx + (1 − α)py

)
P(k + 1, Ñ)

P (k, Ñ + 1) = 2pyα

(1 − α)(1 − vy)
P (k − 1, Ñ) +

(
αpx + (1 − α)py

)
P(k + 1, Ñ).

(24)

Note that (24) clearly displays a Z2 symmetry: px → py, α → −α, vx → vy . Compatibility
conditions for the system (24) read

px

vx
= py

vy
= 2px(1 − α)

α(1 − vx)
= 2pyα

(1 − α)(1 − vy)
(25)

which finally gives

α = −1 − 3β +
√

1 + 14β + β2

2(1 − β)

vx = α

2 − α

vy = 1 − α

1 + α
.

(26)

As has been said above, without (22) the system (19) and (20) is open, giving a single equation
for the unknown function P(k, Ñ) depending on the unknown parameter α:

P(k, Ñ + 1) = (
(2px + py)(1 − α) + (2py + px)α

)
P(k − 1, Ñ)

+
(
py(1 − α) + pxα

)
P(k + 1, Ñ). (27)
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Figure 5. The values of α and k compared with renormalized quantities and numerical simulations:
(a) vortex-type distribution; (b) drift.

Equation (27) describes a 1D diffusion process with a drift

〈k〉
Ñ

≡ k = 2αpy + 2(1 − α)px (28)

and a dispersion

δ = 〈k − 〈k〉〉2

Ñ
= 1 − 4

(
αpy + (1 − α)px

)2
(29)

which provides for k � 1 and Ñ � 1 the usual Gaussian distribution with non-zero mean
(see [10]). The value of α obtained in (26) using the approximation (22) gives a fair estimate
of the drift compared with the numerical simulations, as is shown in figure 5.

3.2. Real space renormalization

In order to improve the results obtained above, we recover the information lost in the
approximation (22) and take into account ‘interactions’ between different scales. Namely,
we follow the renormalization flow of the parameter α(l) at a scale l, supposing that a new
effective step is a composition of 2l initial lattice steps. Let us define:

• the probability fa(l) of going forth (with respect to the location of the root point of the
Cayley tree) from a vertex of kind a;

• the probability ba(l) of going back (towards the root point of the Cayley tree) from a vertex
of kind a;

• the probability α(l) of being at a vertex of kind x;
• the conditional probability wa(l) to reach a vertex of kind a starting from a vertex of kind
a under the condition that the step is forth;

• the conditional probability va(l) to reach a vertex of kind a starting from a vertex of kind
a under the condition that the step is back;

• the effective length d(l) of a composite step.
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Then the drift k(l) at scale l is given by (compare with (28))

k(l) = d(l)
[
α(l)

(
fx(l)− bx(l)

)
+

(
1 − α(l)

)(
fy(l)− by(l)

)]
. (30)

We say that the problem is scale-independent if the flow k(l) is invariant under the
decimation procedure, i.e. with respect to the renormalization group. We compute the flow
counting the appropriate combinations of two steps, depending on the variable considered:

wa(l + 1) = (
1 − wa(l)

)(
1 − wā(l)

)
+ w2

a(l)

va(l + 1) = (
1 − va(l)

)(
1 − vā(l)

)
+ v2

a(l)

fa(l + 1) = fa(l)
[
wa(l)fa(l) +

(
1 − wa(l)

)
fā(l)

]
ca(l)

ba(l + 1) = ba(l)
[
va(l)ba(l) +

(
1 − va(l)

)
bā(l)

]
ca(l)

d(l + 1) = d(l)
[
α(l)cx(l) +

(
1 − α(l)

)
cy(l)

]
α(l + 1) = k(l)

[
α(l)wx(l) +

(
1 − α(l)

)(
1 − wy(l)

)]
+

(
1 − k(l)

) [
α(l)vx(l) +

(
1 − α(l)

)(
1 − vy(l)

)]

(31)

where ā = x when a = y (and ā = y when a = x) and the value ca(l) ensures the conservation
conditionfa(l+1)+ba(l+1) = 1 because we do not consider the combinations of two successive
steps in opposite directions.

The transformation of α in (31) needs some explanation. We consider the drift k(l) as
a probability to make a (composite) step forward. The equation for α is given by counting
the different ways of getting to a vertex of kind x. One can check that k(l) given by (30)
remains invariant under such a transformation, which is considered as a verification of the
scale independence (i.e. of renormalizability).

Following the standard procedure, we find the fixed points for the flow of α(l). First of
all we realize that the recursion equations for wa(l) and va(l) can be solved independently,
providing a continuous set of fixed points: w0

x = 1 − w0
y and v0

x = 1 − v0
y . Using the initial

conditions (26) for va(l) and deriving straightforwardly the absent initial conditions forwa(l),
we obtain

vx(1) = vx

vy(1) = vy

wx(1) = wx = px

px + 2py

wy(1) = wy = py

py + 2px

(32)

(we recall that these values are obtained by taking into account the elementary correlations for
two successive steps).

With the initial conditions (32) we find the following renormalized values v0 and w0 at
the fixed point:

v0 = v0(β) = lim
l→∞

vx(l) = 1 − lim
l→∞

vy(l) = 1
2

[
(vx − vy)

∞∏
n=1

f (n)(vx + vy) + 1

]

w0 = w0(β) = lim
l→∞

wx(l) = 1 − lim
l→∞

wy(l) = 1
2

[
(wx − wy)

∞∏
n=1

f (n)(wx + wy) + 1

] (33)
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where f (n)(x) is the nth iteration of the function

f (x) = x2 − 2x + 2.

We then obtain successively all renormalized values at the fixed point

f 0
a = 1

b0
a = 0

d0 = k0 = α0 + β(1 − α0)

1 + β

α0 = v0 + βw0

1 + β + (1 − β)(v0 − w0)

(34)

where the invariance of the drift k is taken into account:

k0 = k(1) = 2pyα
0 + 2px(1 − α0) = α0 + β(1 − α0)

1 + β
.

In figure 5 we compare the theoretical results with numerical simulations. It is worth
mentioning the efficiency of the renormalization-group method, which yields a solution in
very good agreement with numerical simulations in a broad interval of values β.

In addition, we compare our results with the exact expression obtained by Gerl and Woess
in [15] for the probability P(0, Ñ) to return to the origin after Ñ random steps on the non-
symmetric Cayley tree. This distribution function P(0, Ñ) reads

P(0, Ñ) ∝ µÑ Ñ−3/2 (35)

with

µ ≡ µ(β) = min

{
−t +

√
t2 + 4p2

x +
√
t2 + 4p2

y

∣∣t > 0

}
. (36)

Let us now assert, without justification, that equation (27) (which is actually written for
k � 1 and Ñ � 1) is valid for any values of k and Ñ . The initial conditions for the recursion
relation (27) are as follows:

P(0, Ñ + 1) = (
2αpx + 2(1 − α)py

)
P(1, Ñ)

P (k, 0) = δk,0.
(37)

One can note that equation (27) completed with the conditions (37) can be viewed as a master
equation for a symmetric random walk on a Cayley tree with effective branching z continuously
dependent on β:

z(β) = 2

αpx + (1 − α)py
. (38)

Hence, we conclude that our problem becomes equivalent to a symmetric random walk on a
z(β)-branching tree. For k = 0 the solution, given in [10] is

P(0, Ñ) ∝
[

2
√
z(β)− 1

z(β)

]Ñ
Ñ−3/2. (39)

This provides the same form as the exact solution (35). It has been checked numerically that
for β ∈ R

+ the discrepancy between (35) and (39) is as follows:

1

µ(β)

∣∣∣∣2
√
z(β)− 1

z(β)
− µ(β)

∣∣∣∣ < 0.02.

Thus, we believe that our self-consistent RG approach to the statistics of random walks on
non-symmetric trees can be extended with sufficient accuracy to all values of k.
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4. Multifractality and the locally non-uniform curvature of Riemann surfaces

We have claimed in sections 1 and 2 that local non-uniformity and the exponentially growing
structure of the phase space of statistical systems generate a multiscaling behaviour of the
corresponding partition functions. The aim of the present section is to bring geometric
arguments to support our claim by introducing a different approach to the RWAO model.
The differences between the approach considered in this section and that discussed in section 2
are as follows:

• we consider a continuous model of a random walk topologically entangled with either a
symmetric or a non-symmetric triangular lattice of obstacles on the plane;

• we pursue the goal to construct explicitly the metric structure of the topological phase
space via conformal methods and to relate directly the non-uniform fractal relief of
the topological phase space to the multifractal properties of the distribution function
of topological invariants for the given model.

Consider a random walk in a regular array of topological obstacles on the plane. As in
the discrete case we can split the distribution function of all N -step paths with fixed positions
of end points into different topological (homotopy) classes. We characterize each topological
class by a topological invariant similar to the ‘primitive path’ defined in section 2. Introducing
complex coordinates z = x + iy on the plane, we use conformal methods which provide an
efficient tool for investigating multifractal properties of the distribution function of random
trajectories in homotopy classes.

Let us stress that explicit expressions are constructed so far for triangular lattices of
obstacles only. That is why we replace the investigation of the rectangular lattices discussed in
sections 1 and 2 by the consideration of the triangular ones. Moreover, for triangular lattices a
continuous symmetry parameter (such as β = c2

x/c
2
y in the case of rectangular lattices) does not

exist and only the triangles with angles (π/3, π/3, π/3), (π/2, π/4, π/4), (π/2, π/6, π/3)
are available—only such triangles tessellate the whole plane z. In spite of the mentioned
restrictions, the study of these cases enables us to figure out the origin of multifractality
coming from the metric structure of the topological phase space.

Suppose that the topological obstacles form a periodic lattice in the z-plane. Let the
fundamental domain of this lattice be the triangle ABC with angles either (π/3, π/3, π/3)
(symmetric case) or (π/2, π/6, π/3) (non-symmetric case). The conformal mapping z(ζ )

establishes a one-to-one correspondence between a given fundamental domain ABC of the
lattice of obstacles in the z-plane with a zero-angled triangle ABC lying in the upper half-
plane η > 0 of the plane ζ = ξ + iη, and having corners on the real axis η = 0. To avoid

Figure 6. Conformal mapping of the complex plane z to the ‘lacunary’ upper half-plane Im ζ > 0
endowed with a Poincaré metric. The zero-angled triangle ABC on ζ corresponds to the triangle
ABC with the angles (π/2, π/6, π/3) on z.
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Figure 7. Non-symmetric three-branching Cayley tree.

possible misunderstandings let us point out that such a transform is conformal everywhere
except at corner (branching) points (see, for example, [17]). Now consider the tessellation
of the z-plane by means of consecutive reflections of the domain ABC with respect to its
sides, and the corresponding reflections (inversions) of the domain ABC in the ζ -plane. The
first few generations are shown in figure 6. The obtained upper half-plane Im ζ > 0 has a
‘lacunary’ structure and represents the topological phase space of the trajectories entangled
with the lattice of obstacles. The details of such a construction as well as a discussion of
the topological features of the conformal mapping z(ζ ) in the symmetric case can be found
in [13]. We recall the basic properties of the transform z(ζ ) related to our investigation of
multifractality.

The topological state of a trajectory C in the lattice of obstacles can be characterized as
follows.

• Perform the conformal mappings zs(ζ ) (or zns(ζ )) of the plane z with a symmetric (or
non-symmetric) triangular lattice of obstacles to the upper half-plane Im ζ > 0, playing
the role of the topological phase space of the given model.

• Connect by nodes the centres of neighbouring curvilinear triangles in the upper half-plane
Im ζ > 0 and raise a graph γs (or γns) (which is, as shown below an isometric Cayley tree
embedded in the Poincaré plane).

• Find the image of the path C in the ‘covering space’ Im ζ > 0 and define the shortest
(primitive) path connecting the centres of the curvilinear triangles where the ends of the
path C are located. The configuration of this primitive path projected to the Cayley tree
γs (or γns) plays the role of topological invariant for the model under consideration.

The Cayley trees γs,ns have the same topological content as that described in section 2,
but here we determine the Boltzmann weights β1, β2, β3 associated with passages between
neighbouring vertices (see figure 7) directly from the metric properties of the topological
phase space obtained via the conformal mappings zs,ns(ζ ).

It is well known that random walks are conformally invariant; in other words, the diffusion
equation on the plane z preserves its structure under a conformal transform, but the diffusion
coefficient can become space-dependent [18]. Namely, under the conformal transform z(ζ )

the Laplace operator �z = d2

dz dz is transformed in the following way:

d2

dz dz
= 1

|z′(ζ )|2
d2

dζdζ
. (40)
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Before discussing the properties of the Jacobians |z′(ζ )|2 for the symmetric and non-
symmetric transforms, it is more convenient to set up the following geometrical context. The
connection between Cayley trees and surfaces of constant negative curvature has already been
pointed out [13], mostly through volume growth considerations. Therefore, it becomes more
natural to regard the upper half-plane Im ζ > 0 as the standard realization of the hyperbolic 2-
space (surface of constant negative curvatureR, with here arbitrarilyR = −2), i.e. to consider
the following metric:

ds2 = −2

Rη2
(dξ 2 + dη2). (41)

Let us rewrite the Laplace operator (40) in the form

d2

dz dz
= D(ξ, η) η2

(
d2

dξ 2
+

d2

dη2

)
(42)

where the value D(ξ, η) ≡ D(ζ) can be interpreted as the normalized space-dependent
diffusion coefficient on the Poincaré upper half-plane:

D(ζ) = 1

η2 |z′(ζ )|2 . (43)

The methods providing the conformal transform zs(ζ ) for the symmetric triangle with
angles (π/3, π/3, π/3) have been discussed in details in [17]. The generalization of
these results to the conformal transform zns(ζ ) for the non-symmetric triangle with angles
(π/2, π/6, π/3) is very straightforward. We expose here the Jacobians of those conformal
mappings without derivation:

|z′
s(ζ )|2 = 1

π2/3B2
(

1
3 ,

1
3

) ∣∣θ ′
1(0, eiπζ )

∣∣8/3

|z′
ns(ζ )|2 = π2

B2
(

1
2 ,

1
3

) ∣∣θ0(0, eiπζ )
∣∣8/3 ∣∣θ2(0, eiπζ )

∣∣4 ∣∣θ3(0, eiπζ )
∣∣4/3

(44)

where θ ′
1(χ | · · ·) = d

dχ θ1(χ | · · ·) and θi(0| · · ·) (i = 0, . . . , 3) are the standard definitions of
Jacobi elliptic functions [19].

Combining (43) and (44) we define the effective inverse diffusion coefficients in symmetric
(D−1

s ) and in non-symmetric (D−1
ns ) cases:

D−1
s (ζ ) = η2

∣∣z′
s(ζ )

∣∣2

D−1
ns (ζ ) = η2

∣∣z′
ns(ζ )

∣∣2
.

(45)

The corresponding 3D plots of the reliefs D−1
s (ξ, η) and D−1

s (ξ, η) are shown in figure 8.
The functions D−1

s (ζ ) and D−1
ns (ζ ) are considered as quantitative indicators of the

topological structure of the phase spaces; in particular, a Cayley tree can be isometrically
embedded in the surface D−1

s (ζ ). It can be shown that the images of the centres of the
triangles of the symmetric lattice in the z-plane correspond to the local maxima of the surface
D−1

s (ζ ) in the ζ -plane. We define the vertices of the embedded tree as those maxima. The
links connecting neighbouring vertices are defined in the next paragraph.

Let us define the horocycles which correspond to repeating sequences of weights in figure 7
with minimal periods. There are only three such sequences: β1β2β1β2 . . . , β1β3β1β3 . . . and
β2β3β2β3 . . . . The horocycles are images (analytically known) of certain circles of the z-
plane. They proved to be a convenient tool for a constructive description of the trajectories in
the z-plane starting from the trajectories in the covering space ζ .
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Figure 8. Profiles of the surfaces D−1
s (ξ, η) and D−1

ns (ξ, η) where ξ ≡ x, η ≡ − log y. First
generation of horocycles are shown by the lines.

The first generation of horocycles (closest to the root point of the Cayley tree) is shown in
figure 8. Let us consider the symmetric case. Following a given horocycle we follow a ridge of
the surface, and we pass through certain maxima of this surface (that is through certain vertices
of the tree). We therefore define locally the links of the tree as the set of ridges connecting
neighbouring maxima of D−1

s (ξ, η). We recall that the ridge of the surface can be defined
as the set of points where the gradient of the function D−1

s (ξ, η) is minimal along its isoline.
Even if this gives a proper definition of the tree, extracting a direct parametrization is difficult,
that is why henceforth we will approximate the tree by arcs of horocycles.

To give a quantitative formulation of the local definition of the embedded Cayley tree, we
consider the path integral formulation of the problem on the ζ -plane. Define the Lagrangian
L ∝ D−1

s (ζ )ζ̇ 2 of a free particle moving with the diffusion coefficient Ds(ζ ) in the space ζ .
Following the canonical procedure and minimizing the corresponding action [20], we obtain
the equations of motion in the effective potential U = ln(η2Ds):

q̈i = (q̇j ∂jU)q̇i − 1
2 q̇j q̇j ∂iU (46)

where q1 = ξ and q2 = η. Even if equation (46) is nonlinear with a friction term, one can
show that the trajectory of extremal action between the centres of two neighbouring triangles
follows the ridge of the surface Ds(ζ ).
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Figure 9. D−1
ns running along a horocycle at constant

velocity. Periodicity shows that the tree is isometric.

It is noteworthy that obtaining an analytical support of Cayley graphs is of great
importance, since those graphs clearly display ultrametric properties and have connections
to p-adic surfaces [21]. The detailed study of metric properties of the functions D−1

s (ζ ) and
D−1

ns (ζ ) is left for separate publication.
While the self-similar properties of the Jacobians of those conformal mappings appear

clearly in figure 8, one could wonder how the local symmetry breaking affects the continuous
problem. We can see that if D−1

s (ζ ) is univalued along the embedded tree, D−1
ns (ζ ) does vary,

which makes the tree locally non-uniform and leads to a multifractal behaviour. In other words,
different paths of the same length along the tree have the same weights in the symmetric case,
but have different ones in the non-symmetric case. The probability of a random path C of
length L can be written in terms of a path integral with a Wiener measure

pC = D{s} exp

{
−

∫ L

0

1

D[s(t)]

(
ds

dt

)2

dt

}
(47)

where s(t) is a parametric representation of the path C.
The first horocycles in figure 8 can be parametrized as follows:

ξ = 1
2 ± ( 1

2 − 1
3

√
3 sin θ)

η = 1
3

√
3(1 − cos θ)

(48)

with θ running in the interval [0, π/2]. The condition ensuring the constant velocity ṡ ≡ ds
dt

along the horocycles gives with (41)

1

η

dθ

dt
= constant

hence

θ(t) = arctan

(
1

t

)
(49)

with a proper choice of the time unit. This parametrization is used to check that the embedded
tree is isometric. Indeed, the horocycles shown in figure 8 correspond to a periodic sequence of
steps like β1β2β1β2 . . . , β1β3β1β3 . . . or β2β3β2β3 . . . . It is natural to assert that a step carries
a Boltzmann weight characterized by the corresponding local values of D−1

ns . Therefore, the
period of the plot shown in figure 9 is directly linked to the spacing of the tree embedded in
the profile D−1

ns .
Coming back to the probability of different paths covered at constant velocity, one can

write

− logpC ∝
∫ t2

t1

dt

D[s(t)]
. (50)
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Figure 10. Probability of different paths along horocycles. Broken and chain curves correspond to
right- and left-hand side horocycles on the non-symmetric surface, while the full line shows both
right- and left-hand side horocycles on the symmetric surface.

Figure 10 shows the value − logpC in symmetric and non-symmetric cases for different paths
starting at t1 = 0+ and ending at t . In the symmetric case all plots are the same (full line),
whereas in the non-symmetric case they are different: broken and chain lines display the
corresponding plots for the sequences β2β3β2β3 . . . and β1β3β1β3 . . . .

Following the outline of the construction of the fractal dimensions Dq given in section 2,
we can describe multifractality in the continuous case by

Dq = − 1

q − 1
lim
L→∞

1

ln N (L)
ln

∫ D{s} exp
{
−q ∫ L

0 D−1
ns (s(t)) dt

}
[∫ D{s} exp

{
− ∫ L

0 D−1
ns (s(t)) dt

}]q (51)

where N (l) is the area of the surface covered by the trajectories of length L. This form is
consistent with definitions (1) and (16). Indeed, if instead of the usual Wiener measure one
chooses a discrete measure dχT , which is non-zero only for trajectories along the Cayley tree,
we recover the following description.

Define the distribution function ;(β1, β2, β3, k) ≡ ;(β1/β3, β2/β3, k), which has the
sense of a weighted number of directed paths of k steps on the non-symmetric three-branching
Cayley tree shown in figure 7. The values of the effective Boltzmann weights β1/β3 and β2/β3

are defined in terms of the local heights of the surface D−1
ns along the corresponding branches

of the embedded tree. We set

β1

β3
= exp

[∫ t2

t1

dt

Dns[sr (t)]
−

∫ t3

t2

dt

Dns[sr (t)]

]
≈ 1.07

β2

β3
= exp

[∫ t2

t1

dt

Dns[sl(t)]
−

∫ t3

t2

dt

Dns[sl(t)]

]
≈ 1.19

(52)

where t1, t2, t3 are adjusted so that sr (t) represents a step weighted with β3 for t1 < t < t2 and
a step weighted with β1 for t2 < t < t3 for right-hand side horocycles, while sl(t) represents a
step weighted with β3 for t1 < t < t2 and a step weighted with β2 for t2 < t < t3 for left-hand
side horocycles.
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Figure 11. Multifractality of trajectories on a non-symmetric tree with Boltzmann weights defined
by the Jacobian of the conformal mapping (45).

The partition function ;(β1/β3, β2/β3, k) can be computed via a straightforward
generalization of equation (9); it can be written in the form

;

(
β1

β3
,
β2

β3
, k

)
= A0λ

k−1
1 + B0λ

k−1
2 + C0λ

k−1
3 (k � 1) (53)

where λ1, λ2 and λ3 are the roots of the cubic equation

λ3 − λ

(
1 +

β2
2

β2
3

+
β1 β2

β2
3

)
−

(
β1 β2

β2
3

+
β2

2

β2
3

)
= 0

and A0, B0 and C0 are the solutions of the following system of linear equations:

A0 + B0 + C0 = 1 +
β1

β3
+
β2

β3

A0λ1 + B0λ2 + C0λ3 = 2
β1

β3
+ 2

β2

β3
+ 2

β1β2

β2
3

A0λ
2
1 + B0λ

2
2 + C0λ

2
3 = β1

β3
+
β2

β3
+
β2

2

β2
3

+
β2

1

β2
3

+ 6
β1β2

β2
3

+
β2

1β2

β3
3

+
β1β

2
2

β3
3

.

Knowing the distribution function ;(β1/β3, β2/β3, k), equation (51) with the discrete
measure dχT now reads (compare with (16) and (17))

Dq = − 1

q − 1
lim
k→∞

ln;([β1/β3]q , [β2/β3]q , k)− q ln;(β1/β3, β2/β3, k)

ln(3 × 2k−1)
. (54)

The plot of the function Dq(q) is shown in figure 11 (the plot is drawn for k = 100 000).

5. Discussion

The results presented in sections 2–4 are summarized; they underline several problems still
unsolved related to our work, and raise the issue of their possible applications to real physical
systems.
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(a) The basic concepts of multifractality have been clearly formulated mainly for abstract
systems in [1]. In this paper, we have tried to remain as close as possible to these classical
formulations, while adding to abstract models of [1] the new physical content of topological
properties of random walks entangled with an array of obstacles. Our results point out two
conditions which generate multifractality for any physical system: (i) an exponentially
growing number of states, i.e. ‘hyperbolicity’ of the phase space and (ii) the breaking of
a local symmetry of the phase space (while on large scales the phase space could remain
isotropic).
In section 2 we have considered the topological properties of the discrete ‘random walk
in a rectangular lattice of obstacles’ model. Generalizing an approach developed earlier
(see, for example, [13] and references therein) we have shown that the topological phase
space of the model is a Cayley tree whose associated transition probabilities are non-
symmetric. Transition probabilities have been computed from the basic characteristics
of a free random walk within the elementary cell of the lattice of obstacles. The family
of generalized Hausdorff dimensions Dq(q) for the partition function '(βq, k) (where
k is the distance on the Cayley graph which parametrizes the topological state of the
trajectory) exhibits a non-trivial dependence on q, which means that different moments of
the partition function '(βq, k) scale in different ways, for example, such that '(βq, k)
is multifractal.
The main topologically probabilistic issues concerning the distribution of random walks
in a rectangular lattice of obstacles have been considered in section 3. In particular, we
have computed the average ‘degree of entanglement’ of an Ñ -step random walk and the
probability for an Ñ -step random walk to be closed and unentangled. Results have been
achieved through a renormalization-group technique on a non-symmetric Cayley tree. The
renormalization procedure has allowed us to overcome one major difficulty: in spite of a
locally broken spherical symmetry, we have mapped our problem to a symmetric random
walk on a tree of effective branching number z depending on the lattice parameters. To
validate our procedure, we have compared the return probabilities obtained via our RG
approach with the exact result of Gerl and Woess [15] and found a very good numerical
agreement.
The problem tackled in section 4 is closely related to that discussed in section 2. We believe
that the approach developed in section 4 could be very important and informative as it
explicitly shows that multifractality is not attached to particular properties of a statistical
system (such as random walks in our case) but deals directly with metric properties of
the topological phase space. As we have already pointed out, the required conformal
transforms are known only for triangular lattices, what restricts our study. However,
we showed explicitly that the transform zns(ζ ) maps the multi-punctured complex plane
z onto the so-called ‘topological phase space’, which is the complex plane ζ free of
topological obstacles (all obstacles are mapped onto the real axis). We have connected
multifractality to the multi-valley structure of the properly normalized JacobianDns(ξ, η)

of the non-symmetric conformal mapping zns(ζ ). The conformal mapping obtained has
deep relations with number theory, which we are going to discuss in a forthcoming
publication.

(b) The ‘random walk in an array of obstacles’ model can be considered as a basis of a mean-
field-like approach to the problem of entropy calculations in sets of strongly entangled
fluctuating polymer chains. Namely, we choose a test chain, specify its topological state
and assume that the lattice of obstacles models the effect of entanglements with the
surrounding chains (the ‘background’). Changing cx and cy one can mimic the affine
deformation of the background. Investigating the free energy of the test chain entangled
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with the deformed media is an important step towards understanding the high elasticity
of polymeric rubbers [11].
Neglecting the fluctuations of the background as well as the topological constraints which
the test chain produces by itself leads to information loss concerning the correlations
between the test chain and the background. Yet, even in this simplest case we obtain
non-trivial statistical results concerning the test chain topologically interacting with the
background.

The first attempts to go beyond the mean-field approximation of the RWAO model and to
develop a microscopic approach to the statistics of mutually entangled chain-like objects have
been undertaken recently in [22]. We believe that investigating multifractality of such systems
is worthy of attention.
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